Negation of the conditional : “If it rains, I shall go to school” is
It rains and I shall go to school
It rains and I shall not go to school
It does not rains and I shall go to school
None of these
For the statements $p$ and $q$, consider the following compound statements :
$(a)$ $(\sim q \wedge( p \rightarrow q )) \rightarrow \sim p$
$(b)$ $((p \vee q) \wedge \sim p) \rightarrow q$
Then which of the following statements is correct?
If the truth value of the statement $p \to \left( { \sim q \vee r} \right)$ is false $(F)$, then the truth values of the statement $p, q, r$ are respectively
Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{D}$ be four non-empty sets. The contrapositive statement of "If $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D},$ then $\mathrm{A} \subseteq \mathrm{C}^{\prime \prime}$ is
$(p\; \wedge \sim q) \wedge (\sim p \vee q)$ is
Which Venn diagram represent the truth of the statement“All students are hard working.”
Where $U$ = Universal set of human being, $S$ = Set of all students, $H$ = Set of all hard workers.