समीकरण ${e^x} - x - 1 = 0$ के होंगे     

  • A

    केवल एक वास्तविक मूल $x = 0$

  • B

    कम से कम दो वास्तविक मूल

  • C

    ठीक दो वास्तविक मूल

  • D

    अनन्त वास्तविक मूल

Similar Questions

यदि किसी धनपूर्णांक $n$ के लिए, द्विघाती समीकरण

$x(x+1)+(x+1)(x+2)+\ldots+(x+\overline{n-1})(x+n)=10 n$

के दो क्रमिक पूर्णांकीय हल है, तो $n$ बराबर है :

  • [JEE MAIN 2017]

माना कि $x ^2- x -1=0$ के मूल (roots) $\alpha$ और $\beta$ हैं, जहाँ $\alpha>\beta$ है। सभी धनात्मक पूर्णांकों $n$ के लिए निम्न को परिभाषित किया गया है

$a_n=\frac{\alpha^n-\beta^n}{\alpha-\beta}, n \geq 1$

$b_1=1 \text { and } b_n=a_{n-1}+a_{n+1}, n \geq 2.$

तब निम्न में से कौनसा (से) विकल्प सही है (हैं) ?

$(1)$ प्रत्येक $n \geq 1$ के लिए, $a _1+ a _2+ a _3+\ldots . .+ a _{ n }= a _{ n +2}-1$

$(2)$ $\sum_{ n =1}^{\infty} \frac{ a _{ n }}{10^{ n }}=\frac{10}{89}$

$(3)$ $\sum_{ n =1}^{\infty} \frac{ b _{ n }}{10^{ n }}=\frac{8}{89}$

$(4)$ प्रत्येक $n \geq 1$ के लिए, $b _{ n }=\alpha^{ n }+\beta^{ n }$

  • [IIT 2019]

दो बहुपद $p(x), q(x)$ इस प्रकार हैं: $p(x)=x^2-5 x+a$ और $q(x)=x^2-3 x+b$ जहां $a, b$ प्राकृत संख्याएँ हैं । मान लें कि $\operatorname{hcf}(p(x), q(x))=x-1$ और $k(x)=\operatorname{lcm}(p(x), q(x))$ है। यदि बहुपद $k(x)$ के अधिकतम घात के गुणांक का मान 1 है, तो बहुपद $(x-1)+k(x)$ के शून्यकों का योग होगा:

  • [KVPY 2014]

समीकरण $( x +1)^{2}+| x -5|=\frac{27}{4}$ के वास्तविक मूलों की संख्या है ............ |

  • [JEE MAIN 2021]

माना द्विघात समीकरण $x ^2- x -4=0$ के मूल $\alpha, \beta(\alpha > \beta)$ हैं। यदि $P _{ n }=\alpha^{ n }-\beta^{ n }, n \in N$ है, तो $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^2+ P _{14} P _{15}}{ P _{13} P _{14}}$ बराबर है $.........$.

  • [JEE MAIN 2022]