यदि किसी धनपूर्णांक $n$ के लिए, द्विघाती समीकरण
$x(x+1)+(x+1)(x+2)+\ldots+(x+\overline{n-1})(x+n)=10 n$
के दो क्रमिक पूर्णांकीय हल है, तो $n$ बराबर है :
$11$
$12$
$9$
$10$
समीकरण $x^2+y^2=a^2+b^2+c^2$, यहाँ $x, y, a, b, c$ सभी अभाज्य संख्याएँ हैं, के कितने हल हैं?
यदि $72^x \cdot 48^y=6^{x y}$ हो, जहाँ $x$ तथा $y$ अशून्य परिमेय संख्याएँ हैं, तब $x+y$ का मान होगा
यदि बहुपद $P(x)$ का समुच्चय S है जिसकी घात $ \le 2$ हो, जबकि $P(0) = 0,$$P(1) = 1$,$P'(x) > 0,{\rm{ }}\forall x \in (0,\,1)$, तब
सभी वास्तविक संख्याओं $x$ का वह समुच्चय जिसके लिये ${x^2} - |x + 2| + x > 0,$ होगा
ऐसे कितने पूर्णांक $n$ हैं जिनके लिए समीकरण $3 x^3-25 x+n=0$ के तीन वास्तविक शून्यक हैं