The equation of the tangent at the point $(1/4, 1/4)$ of the ellipse $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{{12}} = 1$ is
$3x + y = 48$
$3x + y = 3$
$3x + y = 16$
None of these
If the normal at an end of a latus rectum of an ellipse passes through an extremity of the minor axis, then the eccentricity $e$ of the ellipse satisfies
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{36}+\frac{y^2} {16}=1$
If the co-ordinates of two points $A$ and $B$ are $(\sqrt{7}, 0)$ and $(-\sqrt{7}, 0)$ respectively and $P$ is any point on the conic, $9 x^{2}+16 y^{2}=144,$ then $PA + PB$ is equal to
A tangent to the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$ intersect the co-ordinate axes at $A$ and $B,$ then locus of circumcentre of triangle $AOB$ (where $O$ is origin) is