Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{36}+\frac{y^2} {16}=1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given equation is $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$

Here, the denominator of $\frac{x^{2}}{36}$ is greater than the denominator of $\frac{y^{2}}{16}$

Therefore, the major axis is along the $x-$ axis, while the minor axis is along the $y-$ axis

On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ we obtain $a=6$ and $b=4$

$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{36-16}=\sqrt{20}=2 \sqrt{5}$

Therefore,

The coordinates of the foci are $(2 \sqrt{5}, 0)$ and $(-2 \sqrt{5}, 0)$

The coordinates of the vertices are $(6,\,0)$ and $(-6,\,0)$

Length of major axis $=2 a=12$

Length of minor axis $=2 b=8$

Eccentricity, $e=\frac{c}{a}=\frac{2 \sqrt{5}}{6}=\frac{\sqrt{5}}{3}$

Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 16}{6}=\frac{16}{3}$

Similar Questions

If the distance between the foci of an ellipse be equal to its minor axis, then its eccentricity is

Tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$ touching the ellipse at points $\mathrm{A}$ and $\mathrm{B}$.

$1.$ The coordinates of $\mathrm{A}$ and $\mathrm{B}$ are

$(A)$ $(3,0)$ and $(0,2)$

$(B)$ $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$

$(C)$ $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $(0,2)$

$(D)$ $(3,0)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$

$2.$ The orthocentre of the triangle $\mathrm{PAB}$ is

$(A)$ $\left(5, \frac{8}{7}\right)$ $(B)$ $\left(\frac{7}{5}, \frac{25}{8}\right)$

$(C)$ $\left(\frac{11}{5}, \frac{8}{5}\right)$ $(D)$ $\left(\frac{8}{25}, \frac{7}{5}\right)$

$3.$ The equation of the locus of the point whose distances from the point $\mathrm{P}$ and the line $\mathrm{AB}$ are equal, is

$(A)$ $9 x^2+y^2-6 x y-54 x-62 y+241=0$

$(B)$ $x^2+9 y^2+6 x y-54 x+62 y-241=0$

$(C)$ $9 x^2+9 y^2-6 x y-54 x-62 y-241=0$

$(D)$ $x^2+y^2-2 x y+27 x+31 y-120=0$

 Give the answer question $1,2$ and $3.$

  • [IIT 2010]

Area (in sq. units) of the region outside $\frac{|\mathrm{x}|}{2}+\frac{|\mathrm{y}|}{3}=1$ and inside the ellipse $\frac{\mathrm{x}^{2}}{4}+\frac{\mathrm{y}^{2}}{9}=1$ is

  • [JEE MAIN 2020]

Let $x^2=4 k y, k>0$ be a parabola with vertex $A$. Let $B C$ be its latusrectum. An ellipse with centre on $B C$ touches the parabola at $A$, and cuts $B C$ at points $D$ and $E$ such that $B D=D E=E C(B, D, E, C$ in that order). The eccentricity of the ellipse is

  • [KVPY 2018]

If $a$ and $c$ are positive real numbers and the ellipse $\frac{{{x^2}}}{{4{c^2}}} + \frac{{{y^2}}}{{{c^2}}} = 1$ has four distinct points in common with the circle $x^2 + y^2 = 9a^2$ , then

  • [JEE MAIN 2013]