At which point on $y$-axis the line $x = 0$ is a tangent to circle ${x^2} + {y^2} - 2x - 6y + 9 = 0$
Let $O$ be the centre of the circle $x ^2+ y ^2= r ^2$, where $r >\frac{\sqrt{5}}{2}$. Suppose $P Q$ is a chord of this circle and the equation of the line passing through $P$ and $Q$ is $2 x+4 y=5$. If the centre of the circumcircle of the triangle $O P Q$ lies on the line $x+2 y=4$, then the value of $r$ is. . . .
The line $y = mx + c$ will be a normal to the circle with radius $r$ and centre at $(a, b)$, if
If the tangent at $\left( {1,7} \right)$ to the curve ${x^2} = y - 6$ touches the circle ${x^2} + {y^2} + 16x + 12y + c = 0$ then the value of $c$ is:
If the length of tangent drawn from the point $(5, 3)$ to the circle ${x^2} + {y^2} + 2x + ky + 17 = 0$ be $7$, then $k$ =