$P, Q$ and $R$ are the centres and ${r_1},\,\,{r_2},\,\,{r_3}$ are the radii respectively of three co-axial circles, then $QRr_1^2 + RP\,r_2^2 + PQr_3^2$ is equal to
$PQ\;.\,QR\,.\,RP$
$ - PQ\,.\,QR\,.\,RP$
$P{Q^2}.Q{R^2}.R{P^2}$
None of these
The number of common tangents to the circles ${x^2} + {y^2} - 4x - 6y - 12 = 0$ and ${x^2} + {y^2} + 6x + 18y + 26 = 0$ is
Let $C: x^2+y^2=4$ and $C^{\prime}: x^2+y^2-4 \lambda x+9=0$ be two circles. If the set of all values of $\lambda$ so that the circles $\mathrm{C}$ and $\mathrm{C}^{\prime}$ intersect at two distinct points, is ${R}-[a, b]$, then the point $(8 a+12,16 b-20)$ lies on the curve:
The equation of the circle which touches the circle ${x^2} + {y^2} - 6x + 6y + 17 = 0$ externally and to which the lines ${x^2} - 3xy - 3x + 9y = 0$ are normals, is
If ${x^2} + {y^2} + px + 3y - 5 = 0$ and ${x^2} + {y^2} + 5x$ $ + py + 7 = 0$ cut orthogonally, then $p$ is
The radical centre of the circles ${x^2} + {y^2} + 4x + 6y = 19,{x^2} + {y^2} = 9$ and ${x^2} + {y^2} - 2x - 2y = 5$ will be