उस वृत्त का समीकरण जिसके अभिलम्ब  ${x^2} + 2xy + 3x + 6y = 0$ हैं एवं इसका आकार इतना है कि यह $x(x - 4) + y(y - 3) = 0$ को ठीक अन्दर रखता है, होगा

  • A

    ${x^2} + {y^2} + 3x - 6y - 40 = 0$

  • B

    ${x^2} + {y^2} + 6x - 3y - 45 = 0$

  • C

    ${x^2} + {y^2} + 8x + 4y - 20 = 0$

  • D

    ${x^2} + {y^2} + 4x + 8y + 20 = 0$

Similar Questions

यदि वृत्त $x^2+y^2-2 \sqrt{2} x-6 \sqrt{2} y+14=0$ के व्यासों में से एक व्यास, वृत्त $( x -2 \sqrt{2})^2+( y -2 \sqrt{2})^2= r ^2$ की जीवा है, तो $r^2$ का मान है

  • [JEE MAIN 2022]

यदि वृत्त $(x+1)^2+(y+2)^2=r^2$ तथा $x^2+y^2-4 x-4 y+4=0$ एक दूसरे को ठीक दो विभिन्न बिंदुओं पर काटते हैं, तो

  • [JEE MAIN 2024]

यदि रेखा $y = 2x$ वृत्त ${x^2} + {y^2} - 10x = 0$ की एक जीवा हो तो इस जीवा को व्यास मानकर खींचे गये वृत्त का समीकरण होगा[

यदि चर रेखा $3 x +4 y =\alpha$, दो वत्तों $( x -1)^{2}+( y -1)^{2}=1$ तथा $( x -9)^{2}+( y -1)^{2}=4$ के बीच इस प्रकार स्थित है कि यह किसी मी वत्त से जीवा नहीं बनाती, तो $\alpha$ के समी पूर्णाक मानों का योग है .......... 

  • [JEE MAIN 2021]

बिन्दु $(2, 3)$ एक समाक्ष वृत्त निकाय का एक सीमान्त बिन्दु है जिसका वृत्त ${x^2} + {y^2} = 9$ एक सदस्य है। दूसरे सीमान्त बिन्दु के निर्देशांक होंगे