The equation of ellipse whose distance between the foci is equal to $8$ and distance between the directrix is $18$, is

  • A

    $5{x^2} - 9{y^2} = 180$

  • B

    $9{x^2} + 5{y^2} = 180$

  • C

    ${x^2} + 9{y^2} = 180$

  • D

    $5{x^2} + 9{y^2} = 180$

Similar Questions

Slope of common tangents of parabola $(x -1)^2 = 4(y -2)$ and ellipse ${\left( {x - 1} \right)^2} + \frac{{{{\left( {y - 2} \right)}^2}}}{2} = 1$ are $m_1$ and $m_2$ ,then $m_1^2 + m_2^2$ is equal to

A common tangent to $9x^2 + 16y^2 = 144 ; y^2 - x + 4 = 0 \,\,\&\,\, x^2 + y^2 - 12x + 32 = 0$ is :

Let $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ be an ellipse. Ellipses $E_i$ 's are constructed such that their centres and eccentricities are same as that of $E _1$, and the length of minor axis of $E _{ i }$ is the length of major axis of $E _{ i +1}( i \geq 1)$. If $A _{ i }$ is the area of the ellipse $E _{ i }$, then $\frac{5}{\pi}\left(\sum_{ i =1}^{\infty} A _{ i }\right)$, is equal to _____

  • [JEE MAIN 2025]

Suppose that the foci of the ellipse $\frac{x^2}{9}+\frac{y^2}{5}=1$ are $\left(f_1, 0\right)$ and $\left(f_2, 0\right)$ where $f_1>0$ and $f_2<0$. Let $P _1$ and $P _2$ be two parabolas with a common vertex at $(0,0)$ and with foci at $\left(f_1, 0\right)$ and $\left(2 f_2, 0\right)$, respectively. Let $T_1$ be a tangent to $P_1$ which passes through $\left(2 f_2, 0\right)$ and $T_2$ be a tangent to $P_2$ which passes through $\left(f_1, 0\right)$. The $m_1$ is the slope of $T_1$ and $m_2$ is the slope of $T_2$, then the value of $\left(\frac{1}{m^2}+m_2^2\right)$ is

  • [IIT 2015]

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$