Let $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ be an ellipse. Ellipses $E_i$ 's are constructed such that their centres and eccentricities are same as that of $E _1$, and the length of minor axis of $E _{ i }$ is the length of major axis of $E _{ i +1}( i \geq 1)$. If $A _{ i }$ is the area of the ellipse $E _{ i }$, then $\frac{5}{\pi}\left(\sum_{ i =1}^{\infty} A _{ i }\right)$, is equal to _____

  • [JEE MAIN 2025]
  • A
    $54$
  • B
    $55$
  • C
    $56$
  • D
    $57$

Similar Questions

Let $P\left(x_1, y_1\right)$ and $Q\left(x_2, y_2\right), y_1<0, y_2<0$, be the end points of the latus rectum of the ellipse $x^2+4 y^2=4$. The equations of parabolas with latus rectum $P Q$ are

$(A)$ $x^2+2 \sqrt{3} y=3+\sqrt{3}$

$(B)$ $x^2-2 \sqrt{3} y=3+\sqrt{3}$

$(C)$ $x^2+2 \sqrt{3} y=3-\sqrt{3}$

$(D)$ $x^2-2 \sqrt{3} y=3-\sqrt{3}$

  • [IIT 2008]

Let $P \left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), Q , R$ and $S$ be four points on the ellipse $9 x^2+4 y^2=36$. Let $P Q$ and $RS$ be mutually perpendicular and pass through the origin. If $\frac{1}{( PQ )^2}+\frac{1}{( RS )^2}=\frac{ p }{ q }$, where $p$ and $q$ are coprime, then $p+q$ is equal to $.........$.

  • [JEE MAIN 2023]

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{36}+\frac{y^2} {16}=1$

If $A = [(x,\,y):{x^2} + {y^2} = 25]$ and $B = [(x,\,y):{x^2} + 9{y^2} = 144]$, then $A \cap B$ contains

If $S$ and $S^{\prime}$ are the foci of the ellipse $\frac{x^2}{18}+\frac{y^2}{9}=1$ and $P$ be a point on the ellipse, then $\min \left(S P . S^{\prime} P\right)+$ $\max \left( SP . S ^{\prime} P \right)$ is equal to :

  • [JEE MAIN 2025]