उस वृत्त का समीकरण जो मूल बिन्दु से जाता है एवं वृत्त ${x^2} + {y^2} = {a^2}$ व ${x^2} + {y^2} + 2ax = 2{a^2}$ के समाक्ष है, होगा
${x^2} + {y^2} = 1$
${x^2} + {y^2} + 2ax = 0$
${x^2} + {y^2} - 2ax = 0$
${x^2} + {y^2} = 2{a^2}$
वृत्त ${x^2} + {y^2} = {a^2}$ के नियामक वृत्त (Director circle) का समीकरण है
यदि ${x^2} + {y^2} + px + 3y - 5 = 0$ व ${x^2} + {y^2} + 5x$$ + py + 7 = 0$ परस्पर समकोण पर काटते हैं तो $p$ का मान है
$\lambda$ के सभी वास्तविक मानों का समुच्चय, जिनके लिए वृत्तों $x^{2}+y^{2}-4 x-4 y+6=0$ तथा $x^{2}+y^{2}-10 x-10 y+\lambda=0$ पर ठीक दो उभयनिष्ठ स्पशरेखाएँ खींची जा सकती हों, का जो अंतराल है, वह है
दो वृत्त ${x^2} + {y^2} - 2x + 22y + 5 = 0$ व ${x^2} + {y^2} + 14x + 6y + k = 0$ लम्बवत् प्रतिच्छेदित करेंगे यदि $k =$
यदि दो वृत्त ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ तथा ${x^2} + {y^2} - 8x + 2y + 8 = 0$ दो भिन्न - भिन्न बिन्दुओं पर प्रतिच्छेद करते हों, तो