किसी प्रदेश में विधुत क्षेत्र $\overrightarrow{ E }=\frac{2}{5} E _{0} \hat{ i }+\frac{3}{5} E _{0} \hat{ j }$ है यहाँ $E _{0}=4.0 \times 10^{3} \frac{ N }{ C } \mid Y - Z$ तल के समान्तर $0.4\, m ^{2}$ क्षेत्रफल के आयताकार पष्ठ से गुजरने वाला इस क्षेत्र का फ्लक्स $.........\,Nm ^{2} C ^{-1}$ होगा।
$624$
$661$
$620$
$640$
चित्र में एक आवेशित पिण्ड से निकलने वाली वैद्युत बल रेखाएँ दिखाई गई हैं। यदि $A$ तथा $B$ पर वैद्युत क्षेत्र क्रमश: ${E_A}$ व ${E_B}$ हों तथा $A$ व $B$ के बीच की दूरी $r$ है तो
किसी बिंदु आवेश के कारण उस बिंदु को केंद्र मानकर खींचे गए $10\, cm$ त्रिज्या के गोलीय गाउसीय पृष्ठ पर वैध्युत फ्लक्स $-1.0 \times 10^{3} Nm ^{2} / C$ । $(a)$ यदि गाउसीय पृष्ठ की शिज्या दो गुनी कर दी जाए तो पृष्ठ से कितना फ्लक्स गुजरेगा? $(b)$ बिंदु आवेश का मान क्या है?
$2 \mathrm{~L} \times 2 \mathrm{~L} \times \mathrm{L}$ विमा वाले एक घनाभ के पृष्ठ ' $\mathrm{S}$ ' जिसका क्षेत्रफल $4 \mathrm{~L}^2$ हैं, के केन्द्र पर $q$ आवेश रखा है। ' $\mathrm{S}$ ' के विपरीत पृष्ठ से गुजरने वाला फ्लक्स है:
एक घनाकार क्षेत्र की भुजा $a$ और केन्द्र उद्गम पर हैं। इसमें तीन बिन्दु आवेश रख है : $+3 q (0,0,0)$ पर, $- q (0,- a / 4,0)$ पर और $- q (0,+ a / 4,0)$ । सही विकल्प (विकल्पों का चुनाव करें।
$(A)$ $x =+\frac{ a }{2}$ तल से गुजर रहा कुल विधुत-फ्लक्स, $x =-\frac{ a }{2}$ तल से गुजर रहे कुल विधुत-फ्लक्स के बराबर है।
$(B)$ $y=+\frac{a}{2}$ तल से गुजर रहा कुल विधुत-फ्लक्स, $y=-\frac{a}{2}$ तल से गुजर रहे कुल विधुत-फ्लक्स से अधिक है।
$(C)$ पूरे घनाकर क्षेत्र से गुजर रहा कुल विधुत-फ्लक्स, $\frac{q}{\varepsilon_0}$ है।
$(D)$ $z=+\frac{a}{2}$ तल से गुजर रहा कुल विधुत-फ्लक्स, $x=+\frac{a}{2}$ तल से गुजर रहे कुल विधुत-फ्लक्स से बराबर है।
गॉस प्रमेय का उपयोग करके, विद्युत द्विध्रुव के कारण विद्युत क्षेत्र की तीव्रता ज्ञात करने के लिए गोलीय गॉसीय पृष्ठ लेना सुविधा जनक नहीं है क्योंकि