The electric field between the plates of a parallel plate capacitor when connected to a certain battery is ${E_0}$. If the space between the plates of the capacitor is filled by introducing a material of dielectric constant $K$ without disturbing the battery connections, the field between the plates shall be

  • A

    $K{E_0}$

  • B

    ${E_0}$

  • C

    $\frac{{{E_0}}}{K}$

  • D

    None of the above

Similar Questions

The capacity of a parallel plate condenser is $5\,\mu F$. When a glass plate is placed between the plates of the conductor, its potential becomes $1/8^{th}$ of the original value. The value of dielectric constant will be

What are polar and non-polar molecules ?

The capacity of a parallel plate capacitor with no dielectric substance but with a separation of $0.4 \,cm$ is $2\,\mu \,F$. The separation is reduced to half and it is filled with a dielectric substance of value $2.8$. The final capacity of the capacitor is.......$\mu \,F$

Two parallel plate capacitors of capacity $C$ and $3\,C$ are connected in parallel combination and charged to a potential difference $18\,V$. The battery is then disconnected and the space between the plates of the capacitor of capacity $C$ is completely filled with a material of dielectric constant $9$. The final potential difference across the combination of capacitors will be $V$

  • [JEE MAIN 2022]

What will be the capacity of a parallel-plate capacitor when the half of parallel space between the plates is filled by a material of dielectric constant ${\varepsilon _r}$ ? Assume that the capacity of the capacitor in air is $C$