The eccentricity of an ellipse is $2/3$, latus rectum is $5$ and centre is $(0, 0)$. The equation of the ellipse is

  • A

    $\frac{{{x^2}}}{{81}} + \frac{{{y^2}}}{{45}} = 1$

  • B

    $\frac{{4{x^2}}}{{81}} + \frac{{4{y^2}}}{{45}} = 1$

  • C

    $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$

  • D

    $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$

Similar Questions

Let $P \left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), Q , R$ and $S$ be four points on the ellipse $9 x^2+4 y^2=36$. Let $P Q$ and $RS$ be mutually perpendicular and pass through the origin. If $\frac{1}{( PQ )^2}+\frac{1}{( RS )^2}=\frac{ p }{ q }$, where $p$ and $q$ are coprime, then $p+q$ is equal to $.........$.

  • [JEE MAIN 2023]

If end points of latus rectum of an ellipse are vertices of a square, then eccentricity of ellipse will be -

$P$ is a variable point on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ with $AA'$ as the major axis. Then the maximum value of the area of $\Delta APA'$ is

The line, $ lx + my + n = 0$  will cut the ellipse $\frac{{{x^2}}}{{{a^2}}}$ $+$ $\frac{{{y^2}}}{{{b^2}}}$ $= 1 $ in points whose eccentric angles differ by $\pi /2$  if :

If the length of the latus rectum of an ellipse is $4\,units$ and the distance between a focus and its nearest vertex on the major axis is $\frac {3}{2}\,units$ , then its eccentricity is?

  • [JEE MAIN 2018]