Let $P \left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), Q , R$ and $S$ be four points on the ellipse $9 x^2+4 y^2=36$. Let $P Q$ and $RS$ be mutually perpendicular and pass through the origin. If $\frac{1}{( PQ )^2}+\frac{1}{( RS )^2}=\frac{ p }{ q }$, where $p$ and $q$ are coprime, then $p+q$ is equal to $.........$.
$143$
$137$
$157$
$147$
A man running a racecourse notes that the sum of the distances from the two flag posts from him is always $10 \,m$ and the distance between the flag posts is $8\, m$ Find the equation of the posts traced by the man.
The latus rectum of an ellipse is $10$ and the minor axis is equal to the distance between the foci. The equation of the ellipse is
The sum of the focal distances of any point on the conic $\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1$ is
If $\frac{{\sqrt 3 }}{a}x + \frac{1}{b}y = 2$ touches the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ then its, eccentric angle $\theta $ is equal to: ................ $^o$
Let $A = \left\{ {\left( {x,y} \right):\,y = mx + 1} \right\}$
$B = \left\{ {\left( {x,y} \right):\,\,{x^2} + 4{y^2} = 1} \right\}$
$C = \left\{ {\left( {\alpha ,\beta } \right):\,\left( {\alpha ,\beta } \right) \in A\,\,and\,\,\left( {\alpha ,\beta } \right) \in B\,\,and\,\alpha \, > 0} \right\}$ .
If set $C$ is singleton set then sum of all possible values of $m$ is