If end points of latus rectum of an ellipse are vertices of a square, then eccentricity of ellipse will be -
$\frac{1}{{\sqrt 2 }}$
$\frac{{\sqrt 5 \, + \,\,1}}{4}$
$\frac{{\sqrt 5 \, - \,\,1}}{4}$
$\frac{{\sqrt 5 \, - \,\,1}}{2}$
Let $A = \left\{ {\left( {x,y} \right):\,y = mx + 1} \right\}$
$B = \left\{ {\left( {x,y} \right):\,\,{x^2} + 4{y^2} = 1} \right\}$
$C = \left\{ {\left( {\alpha ,\beta } \right):\,\left( {\alpha ,\beta } \right) \in A\,\,and\,\,\left( {\alpha ,\beta } \right) \in B\,\,and\,\alpha \, > 0} \right\}$ .
If set $C$ is singleton set then sum of all possible values of $m$ is
The equation of normal at the point $(0, 3)$ of the ellipse $9{x^2} + 5{y^2} = 45$ is
Let the line $y=m x$ and the ellipse $2 x^{2}+y^{2}=1$ intersect at a ponit $\mathrm{P}$ in the first quadrant. If the normal to this ellipse at $P$ meets the co-ordinate axes at $\left(-\frac{1}{3 \sqrt{2}}, 0\right)$ and $(0, \beta),$ then $\beta$ is equal to
The angle between the pair of tangents drawn from the point $(1, 2)$ to the ellipse $3{x^2} + 2{y^2} = 5$ is
The area (in sq, units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$ is :