If end points of latus rectum of an ellipse are vertices of a square, then eccentricity of ellipse will be -

  • A

    $\frac{1}{{\sqrt 2 }}$

  • B

    $\frac{{\sqrt 5 \, + \,\,1}}{4}$

  • C

    $\frac{{\sqrt 5 \, - \,\,1}}{4}$

  • D

    $\frac{{\sqrt 5 \, - \,\,1}}{2}$

Similar Questions

Let $A = \left\{ {\left( {x,y} \right):\,y = mx + 1} \right\}$ 

      $B = \left\{ {\left( {x,y} \right):\,\,{x^2} + 4{y^2} = 1} \right\}$ 

$C = \left\{ {\left( {\alpha ,\beta } \right):\,\left( {\alpha ,\beta } \right) \in A\,\,and\,\,\left( {\alpha ,\beta } \right) \in B\,\,and\,\alpha \, > 0} \right\}$ . 

If set $C$ is singleton set then sum of all possible values of $m$ is

The equation of normal at the point $(0, 3)$ of the ellipse $9{x^2} + 5{y^2} = 45$ is

Let the line $y=m x$ and the ellipse $2 x^{2}+y^{2}=1$ intersect at a ponit $\mathrm{P}$ in the first quadrant. If the normal to this ellipse at $P$ meets the co-ordinate axes at $\left(-\frac{1}{3 \sqrt{2}}, 0\right)$ and $(0, \beta),$ then $\beta$ is equal to

  • [JEE MAIN 2020]

The angle between the pair of tangents drawn from the point $(1, 2)$ to the ellipse $3{x^2} + 2{y^2} = 5$ is

The area (in sq, units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$ is :

  • [JEE MAIN 2015]