Consider a function $f:\left[0, \frac{\pi}{2}\right]$ $ \rightarrow$ $R$ given by $f(x)=\sin x$ and $g:\left[0, \frac{\pi}{2}\right] $ $\rightarrow$ $R$ given by $g(x)=\cos x .$ Show that $f$ and $g$ are one-one, but $f\,+\,g$ is not one-one.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since for any two distinct elements $x_{1}$ and $x_{2}$ in $\left[0, \frac{\pi}{2}\right]$, $\sin x_{1} \neq \sin x_{2}$ and $\cos x_{1} \neq \cos x_{2},$ both $f$ and $g$ must be one-one. But $(f\,+\,g)(0)=\sin 0+\cos 0=1$ and $(f+g)\left(\frac{\pi}{2}\right)$ $=\sin \frac{\pi}{2}+\cos \frac{\pi}{2}=1 .$ Therefore, $f\,+\,g$ is not one-one.

Similar Questions

Let $f(x) = (1 + {b^2}){x^2} + 2bx + 1$ and $m(b)$ the minimum value of $f(x)$ for a given $b$. As $b$ varies, the range of $m(b)$ is

  • [IIT 2001]

The largest interval lying in $\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$ for which the function, $f\left( x \right) = {4^{ - {x^2}}} + {\cos ^{ - 1}}\left( {\frac{x}{2} - 1} \right) + \log \left( {\cos x} \right)$  is defined is

  • [AIEEE 2007]

Let $R$ be the set of all real numbers and $f(x)=\sin ^{10} x\left(\cos ^8 x+\cos ^4 x+\cos ^2 x+1\right)$ $x \in R$. Let  $S=\{\lambda \in R$ there exists a point $c \in(0,2 \pi)$ with $\left.f^{\prime}(c)=\lambda f(c)\right\}$ Then,

  • [KVPY 2020]

Let $\mathrm{f}(\mathrm{x})$ be a polynomial of degree $3$ such that $\mathrm{f}(\mathrm{k})=-\frac{2}{\mathrm{k}}$ for $\mathrm{k}=2,3,4,5 .$ Then the value of $52-10 \mathrm{f}(10)$ is equal to :

  • [JEE MAIN 2021]

If $f( x + y )=f( x ) f( y )$ and $\sum \limits_{ x =1}^{\infty} f( x )=2, x , y \in N$ where $N$ is the set of all natural numbers, then the value of $\frac{f(4)}{f(2)}$ is

  • [JEE MAIN 2020]