If the buoyant force $F$ acting on an object depends on its volume $V$ immersed in a liquid, the density $\rho$ of the liquid and the acceleration due to gravity $g$. The correct expression for $F$ can be

  • A

    $V \rho g$

  • B

    $\frac{\rho g}{V}$

  • C

    $\rho g V^2$

  • D

    $\sqrt{\rho g V}$

Similar Questions

If the present units of length. time and mass $(m, s, k g)$ are changed to $100\; m, 100\; s$. $\frac{1}{10} \;k g$ then

If force $(F)$, length $(L)  $ and time $(T)$ are assumed to be fundamental units, then the dimensional formula of the mass will be

If ${E}, {L}, {m}$ and ${G}$ denote the quantities as energy, angular momentum, mass and constant of gravitation respectively, then the dimensions of ${P}$ in the formula ${P}={EL}^{2} {m}^{-5} {G}^{-2}$ are

  • [JEE MAIN 2021]

The time dependence of a physical quantity $P$ is given by $ P = P_0 exp^{(-\alpha t^{2})} $ where $\alpha$ is a constant and $t$ is time. The constant $\alpha$ 

  • [AIPMT 1993]

If $P$ represents radiation pressure, $c$ represents speed of light and $Q$ represents radiation energy striking a unit area per second, then non-zero integers $x,\,y$ and $z$ such that ${P^x}{Q^y}{c^z}$ is dimensionless, are

  • [AIPMT 1992]