वह प्रतिबंध जिसके लिये ${x^3} - 3px + 2q$,${x^2} + 2ax + {a^2}$ प्रकार के गुणनखण्ड से विभाजित होगा

  • A

    $3p = 2q$

  • B

    $3p + 2q = 0$

  • C

    ${p^3} = {q^2}$

  • D

    $27{p^3} = 4{q^2}$

Similar Questions

यदि $a, b, c, d,-5$ तथा 5 के बीच की वास्तविक संख्याएँ इस प्रकार हैं कि $|a|=\sqrt{4-\sqrt{5-a}}, \quad|b|=\sqrt{4+\sqrt{5-b}}, \quad|c|=\sqrt{4-\sqrt{5+c}},|d|=\sqrt{4+\sqrt{5+a}}$ तब गुणांक $abcd$ क्या होगा ?

  • [KVPY 2017]

माना $\alpha$ और $\beta$ समीकरण $5 x^{2}+6 x-2=0$ के मूल हैं यदि $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3, \ldots$, तो

  • [JEE MAIN 2020]

समीकरण ${x^4} - 2{x^3} + x = 380$ के मूल हैं

दो भिन्न बहुपद $f(x)$ और $g(x)$ इस प्रकार हैं: $f(x)=x^2+a x+2 ; \quad g(x)=x^2+2 x+a \text {. }$

यदि समीकरण $f(x)=0, g(x)=0$ का एक शून्यक साझा हो तो, समीकरण $f(x)+g(x)=0$ के शून्यकों का योग होगा :

  • [KVPY 2015]

$|x - 2{|^2} + |x - 2| - 6 = 0$के मूल होंगे