The statement $( p \wedge q ) \Rightarrow( p \wedge r )$ is equivalent to.
$q \Rightarrow(p \wedge r)$
$p \Rightarrow( p \wedge r )$
$( p \wedge r ) \Rightarrow( p \wedge q )$
$(p \wedge q) \Rightarrow r$
Consider
Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.
Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow \sim p )$ is a tautology.
The propositions $(p \Rightarrow \;\sim p) \wedge (\sim p \Rightarrow p)$ is a
Let $p , q , r$ be three logical statements. Consider the compound statements $S _{1}:((\sim p ) \vee q ) \vee((\sim p ) \vee r ) \text { and }$ and $S _{2}: p \rightarrow( q \vee r )$ Then, which of the following is NOT true$?$
The contrapositive of the statement "I go to school if it does not rain" is
When does the current flow through the following circuit