The coefficient of $x^{18}$ in the product $(1+ x)(1- x)^{10} (1+ x + x^2 )^9$ is
$84$
$126$
$-126$
$-84$
If $\alpha$ and $\beta$ be the coefficients of $x^{4}$ and $x^{2}$ respectively in the expansion of
$(\mathrm{x}+\sqrt{\mathrm{x}^{2}-1})^{6}+(\mathrm{x}-\sqrt{\mathrm{x}^{2}-1})^{6}$, then
If the constant term in the binomial expansion of $\left(\frac{x^{\frac{5}{2}}}{2}-\frac{4}{x^{\ell}}\right)^9$ is $-84$ and the Coefficient of $x^{-3 \ell}$ is $2^\alpha \beta$, where $\beta < 0$ is an odd number, Then $|\alpha \ell-\beta|$ is equal to
In the expansion of ${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$, the coefficient of ${x^4}$is
The coefficient of $x^{7}$ in the expression $(1+x)^{10}+x(1+x)^{9}+x^{2}(1+x)^{8}+\ldots+x^{10}$ is
Given that $4^{th}$ term in the expansion of ${\left( {2 + \frac{3}{8}x} \right)^{10}}$ has the maximum numerical value, the range of value of $x$ for which this will be true is given by