The coefficient of ${t^{24}}$ in the expansion of ${(1 + {t^2})^{12}}(1 + {t^{12}})\,(1 + {t^{24}})$ is

  • [IIT 2003]
  • A

    $^{12}{C_6} + 2$

  • B

    $^{12}{C_5}$

  • C

    $^{12}{C_6}$

  • D

    $^{12}{C_7}$

Similar Questions

$x^r$ occurs in the expansion of ${\left( {{x^3} + \frac{1}{{{x^4}}}} \right)^n}$ provided -

If the coefficients of $x^{7}$ in $\left(x^{2}+\frac{1}{b x}\right)^{11}$ and $x^{-7}$ in $\left(x-\frac{1}{b x^{2}}\right)^{11}, b \neq 0$, are equal, then the value of $b$ is equal to:

  • [JEE MAIN 2021]

Let for the $9^{\text {th }}$ term in the binomial expansion of $(3+6 x)^{n}$, in the increasing powers of $6 x$, to be the greatest for $x=\frac{3}{2}$, the least value of $n$ is $n_{0}$. If $k$ is the ratio of the coefficient of $x ^{6}$ to the coefficient of $x ^{3}$, then $k + n _{0}$ is equal to.

  • [JEE MAIN 2022]

The ratio of the coefficient of $x^{15}$ to the term independent of $x$ in the expansion of ${\left( {{x^2} + \frac{2}{x}} \right)^{15}}$ is

  • [JEE MAIN 2013]

For some $n \neq 10$, let the coefficients of the $5^{\text {th }}, 6^{\text {th }}$ and $7^{\text {th }}$ terms in the binomial expansion of $(1+x)^{\text {n+4 }}$ be in $A.P.$ Then the largest coefficient in the expansion of $(1+x)^{n+4}$ is :

  • [JEE MAIN 2025]