The coefficient of $x^{2012}$ in the expansion of $(1-x)^{2008}\left(1+x+x^2\right)^{2007}$ is equal to

  • [JEE MAIN 2024]
  • A

    $0$

  • B

    $11$

  • C

    $2$

  • D

    $3$

Similar Questions

The coefficients of three consecutive terms in the expansion of $(1+a)^{n}$ are in the ratio $1: 7: 42 .$ Find $n$

In the expansion of ${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$, the coefficient of ${x^4}$is

  • [IIT 1983]

The Coefficient of $x ^{-6}$, in the expansion of $\left(\frac{4 x}{5}+\frac{5}{2 x^2}\right)^9$, is $........$.

  • [JEE MAIN 2023]

The coefficient of $\frac{1}{x}$ in the expansion of ${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ is

Let $m$ be the smallest positive integer such that the coefficient of $x^2$ in the expansion of $(1+x)^2+(1+x)^3+\cdots+(1+x)^{49}+(1+m x)^{50}$ is $(3 n+1)^{51} C_3$ for some positive integer $n$. Then the value of $n$ is

  • [IIT 2016]