$\left(2 x^3-\frac{1}{3 x^2}\right)^5$ के प्रसार में $\mathrm{x}^5$ का गुणांक है
$8$
$9$
$\frac{80}{9}$
$\frac{26}{3}$
यदि ${\left( {2 + \frac{x}{3}} \right)^n}$ में ${x^7}$ तथा ${x^8}$ के गुणांक बराबर हैं, तब $n$ है
यदि $\left(a x-\frac{1}{b x^2}\right)^{13}$ में $x^7$ का गुणांक तथा $\left(a x+\frac{1}{b x^2}\right)^{13}$ में $x^{-5}$ का गुणांक बराबर हैं, तो $a^4 b^4$ बराबर है :
${(x + 3)^6}$ के विस्तार में ${x^5}$ का गुणांक होगा
माना $\left(\mathrm{x}-\frac{3}{\mathrm{x}^2}\right)^{\mathrm{n}}, \mathrm{x} \neq 0, \mathrm{n} \in \mathrm{N}$, के प्रसार में प्रथम तीन पदों के गुणांको का योग 376 है। तो $\mathrm{x}^4$ का गुणांक ___________ है।
यदि ${(1 + x)^m}{(1 - x)^n}$ के प्रसार $(expansion)$ में $x$ और ${x^2}$ के गुणांक $(coefficient)$ क्रमश: $3$ और $-6$ हैं, तो $m =$