The coefficient of $x^{4}$ is the expansion of $\left(1+\mathrm{x}+\mathrm{x}^{2}\right)^{10}$ is
$615$
$625$
$595$
$575$
The term independent of $x$ in the expression of $\left(1-x^{2}+3 x^{3}\right)\left(\frac{5}{2} x^{3}-\frac{1}{5 x^{2}}\right)^{11}, x \neq 0$ is
Prove that $\sum\limits_{r = 0}^n {{3^r}{\,^n}{C_r} = {4^n}} $
In ${\left( {\sqrt[3]{2} + \frac{1}{{\sqrt[3]{3}}}} \right)^n}$ if the ratio of ${7^{th}}$ term from the beginning to the ${7^{th}}$ term from the end is $\frac{1}{6}$, then $n = $
Two middle terms in the expansion of ${\left( {x - \frac{1}{x}} \right)^{11}}$ are
${r^{th}}$ term in the expansion of ${(a + 2x)^n}$ is