Coefficient of $t^{20}$ in the expansion of $(1 + t^2)^{10}(1 + t^{10})(1 + t^{20})$ is
$^{10}C_5 + 2$
$^{10}C_5$
$^{10}C_5 + 1$
None of these
If ${x^m}$occurs in the expansion of ${\left( {x + \frac{1}{{{x^2}}}} \right)^{2n}},$ then the coefficient of ${x^m}$ is
Let $\alpha$ be the constant term in the binomial expansion of $\left(\sqrt{ x }-\frac{6}{ x ^{\frac{3}{2}}}\right)^{ n }, n \leq 15$. If the sum of the coefficients of the remaining terms in the expansion is $649$ and the coefficient of $x^{-n}$ is $\lambda \alpha$, then $\lambda$ is equal to $..........$.
The middle term in the expansion of ${\left( {3x - \frac{{{x^3}}}{6}} \right)^9}$ are :-
A ratio of the $5^{th}$ term from the beginning to the $5^{th}$ term from the end in the binomial expansion of $\left( {{2^{1/3}} + \frac{1}{{2{{\left( 3 \right)}^{1/3}}}}} \right)^{10}$ is
For the natural numbers $m, n$, if $(1-y)^{m}(1+y)^{n}=1+a_{1} y+a_{2} y^{2}+\ldots .+a_{m+n} y^{m+n}$ and $a_{1}=a_{2}$ $=10$, then the value of $(m+n)$ is equal to: