Given that $4^{th}$ term in the expansion of ${\left( {2 + \frac{3}{8}x} \right)^{10}}$ has the maximum numerical value, the range of value of $x$ for which this will be true is given by

  • A

    $ - \frac{{64}}{{21}} < x < - 2$

  • B

    $ - \frac{{64}}{{21}} < x < 2$

  • C

    $\frac{{64}}{{21}} < x < 4$

  • D

    None of these

Similar Questions

If the coefficients of ${T_r},\,{T_{r + 1}},\,{T_{r + 2}}$ terms of ${(1 + x)^{14}}$ are in $A.P.$, then $r =$

Evaluate $(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$

The term independent of $x$ in the expression of $\left(1-x^{2}+3 x^{3}\right)\left(\frac{5}{2} x^{3}-\frac{1}{5 x^{2}}\right)^{11}, x \neq 0$ is

  • [JEE MAIN 2022]

If the co-efficient of $x^9$ in $\left(\alpha x^3+\frac{1}{\beta x}\right)^{11}$ and the co-efficient of $x^{-9}$ in $\left(\alpha x-\frac{1}{\beta x^3}\right)^{11}$ are equal, then $(\alpha \beta)^2$ is equal to $.............$.

  • [JEE MAIN 2023]

If the coefficients of $x^{7}$ and $x^{8}$ in the expansion of $\left(2+\frac{x}{3}\right)^{n}$ are equal, then the value of $n$ is equal to $.....$

  • [JEE MAIN 2021]