The coefficient of $x^8$ in the expansion of $(1 -x^4)^4 (1 + x)^5$ is :-

  • A

    $20$

  • B

    $-32$

  • C

    $-14$

  • D

    $30$

Similar Questions

The largest term in the expansion of ${(3 + 2x)^{50}}$ where $x = \frac{1}{5}$ is

  • [IIT 1993]

If the third term in the binomial expansion of ${\left( {1 + {x^{{{\log }_2}\,x}}} \right)^5}$ equals $2560$, then a possible value of $x$ is

  • [JEE MAIN 2019]

If coefficients of $2^{nd}$, $3^{rd}$ and $4^{th}$ terms in the binomial expansion of ${(1 + x)^n}$ are in $A.P.$, then ${n^2} - 9n$ is equal to

If $p$ and $q$ be positive, then the coefficients of ${x^p}$ and ${x^q}$ in the expansion of ${(1 + x)^{p + q}}$will be

  • [AIEEE 2002]

If the second term of the expansion ${\left[ {{a^{\frac{1}{{13}}}}\,\, + \,\,\frac{a}{{\sqrt {{a^{ - 1}}} }}} \right]^n}$ is $14a^{5/2}$ then the value of $\frac{{^n{C_3}}}{{^n{C_2}}}$ is :