The Boolean expression $(p \wedge \sim q) \Rightarrow(q \vee \sim p)$ is equivalent to:
$\sim q \Rightarrow p$
$\mathrm{p} \Rightarrow \mathrm{q}$
$\mathrm{p} \Rightarrow \sim \mathrm{q}$
$\mathrm{q} \Rightarrow \mathrm{p}$
The negation of the statement $''96$ is divisible by $2$ and $3''$ is
The negation of the Boolean expression $ \sim \,s\, \vee \,\left( { \sim \,r\, \wedge \,s} \right)$ is equivalent to
The Boolean expression $(\mathrm{p} \wedge \mathrm{q}) \Rightarrow((\mathrm{r} \wedge \mathrm{q}) \wedge \mathrm{p})$ is equivalent to :
Which of the following Boolean expressions is not a tautology ?
The conditional $(p \wedge q) \Rightarrow p$ is :-