The Boolean expression $(p \wedge \sim q) \Rightarrow(q \vee \sim p)$ is equivalent to:

  • [JEE MAIN 2021]
  • A

    $\sim q \Rightarrow p$

  • B

    $\mathrm{p} \Rightarrow \mathrm{q}$

  • C

    $\mathrm{p} \Rightarrow \sim \mathrm{q}$

  • D

    $\mathrm{q} \Rightarrow \mathrm{p}$

Similar Questions

The negation of the statement $''96$ is divisible by $2$ and $3''$ is

The negation of the Boolean expression $ \sim \,s\, \vee \,\left( { \sim \,r\, \wedge \,s} \right)$ is equivalent to

  • [JEE MAIN 2019]

The Boolean expression $(\mathrm{p} \wedge \mathrm{q}) \Rightarrow((\mathrm{r} \wedge \mathrm{q}) \wedge \mathrm{p})$ is equivalent to :

  • [JEE MAIN 2021]

Which of the following Boolean expressions is not a tautology ?

  • [JEE MAIN 2021]

The conditional $(p \wedge q)  \Rightarrow  p$ is :-