The conditional $(p \wedge q) \Rightarrow p$ is :-
A tautology
A fallacy i.e., contradiction
Neither tautology nor fallacy
None of these
$\sim (p \vee (\sim q))$ is equal to .......
Which of the following is logically equivalent to $\sim(\sim p \Rightarrow q)$
The negation of the statement $q \wedge \left( { \sim p \vee \sim r} \right)$
The converse of the statement $((\sim p) \wedge q) \Rightarrow r$ is
The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to :