Which of the following Boolean expressions is not a tautology ?
$(\sim \mathrm{p} \Rightarrow \mathrm{q}) \vee(\sim \mathrm{q} \Rightarrow p)$
$(\mathrm{q} \Rightarrow p) \vee(\sim \mathrm{q} \Rightarrow p)$
$(\mathrm{p} \Rightarrow \mathrm{q}) \vee(\sim \mathrm{q} \Rightarrow p)$
$(\mathrm{p} \Rightarrow \sim \mathrm{q}) \vee(\sim \mathrm{q} \Rightarrow p)$
The number of ordered triplets of the truth values of $p, q$ and $r$ such that the truth value of the statement $(p \vee q) \wedge(p \vee r) \Rightarrow(q \vee r)$ is True, is equal to
Which Venn diagram represent the truth of the statement“All students are hard working.”
Where $U$ = Universal set of human being, $S$ = Set of all students, $H$ = Set of all hard workers.
The following statement $\left( {p \to q} \right) \to $ $[(\sim p\rightarrow q) \rightarrow q ]$ is
If $p , q$ and $r$ are three propositions, then which of the following combination of truth values of $p , q$ and $r$ makes the logical expression $\{(p \vee q) \wedge((\sim p) \vee r)\} \rightarrow((\sim q) \vee r)$ false ?
Negation of the statement $P$ : For every real number, either $x > 5$ or $x < 5$ is