The arithmetic mean of the nine numbers in the given set $\{9,99,999,...., 999999999\}$ is a $9$ digit number $N$, all whose digits are distinct. The number $N$ does not contain the digit

  • A

    $0$

  • B

    $2$

  • C

    $5$

  • D

    $9$

Similar Questions

A man deposited $Rs$ $10000$ in a bank at the rate of $5 \%$ simple interest annually. Find the amount in $15^{\text {th }}$ year since he deposited the amount and also calculate the total amount after $20$ years.

Let $X$ be the set consisting of the first $2018$ terms of the arithmetic progression $1,6,11$,

. . . .and $Y$ be set consisting of the first $2018$ terms of the arithmetic progression $9, 16, 23$,. . . . . Then, the number of elements in the set $X \cup Y$ is. . . . 

  • [IIT 2018]

If the sum of $\mathrm{n}$ terms of an $\mathrm{A.P.}$ is $n P+\frac{1}{2} n(n-1) Q,$ where $\mathrm{P}$ and $\mathrm{Q}$ are constants, find the common difference.

A man starts repaying a loan as first instalment of $Rs.$ $100 .$ If he increases the instalment by $Rs \,5$ every month, what amount he will pay in the $30^{\text {th }}$ instalment?

If the sum of $n$ terms of an $A.P.$ is $\left(p n+q n^{2}\right),$ where $p$ and $q$ are constants, find the common difference.