दीर्घवृत्त $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$ की नाभिलम्ब जीवा के सिरों पर स्पर्शियों से निर्मित चतुभ्र्ज का क्षेत्रफल ............. वर्ग इकाई होगा
$27/4$
$9 $
$27/2$
$27$
यदि दीर्घवृत्त $3 x ^{2}+4 y ^{2}=12$ के एक बिन्दु $P$ पर अभिलम्ब, रेखा $2 x + y =4$ के समान्तर है तथा $P$ पर दीर्घवृत की स्पर्श रेखा $Q (4,4)$ से होकर जाती है, तो $PQ$ बराबर हैं
शांकव $9{x^2} + 4{y^2} - 6x + 4y + 1 = 0$के अक्षों की लम्बाईयाँ हैं
एक दीर्घवृत्त एक गोल धागे से बनाया जाता है जो दो पिनों के ऊपर से होकर गुजरता है । यदि इस प्रकार बने दीर्घवृत्त के अक्ष क्रमश: $6$ सेमी व $4$ सेमी हों, तो धागे की लम्बाई और पिनों के बीच की दूरी सेमी में क्रमश: होगी
दीर्घवृत्त के नाभियों के बीच की दूरी 16 तथा उत्केन्द्रता $\frac{1}{2}$ है। दीर्घवृत्त के दीर्घाक्ष की लम्बाई है
दीर्घवृत्तों (Ellipses) $\left\{ E _1, E _2, E _3, \ldots ..\right\}$ और आयतों (rectangles) $\left\{ R _1, K _2, K _3, \ldots ..\right\}$ के संग्रहों को निम्न प्रकार से परिभाषित करे :
$E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$
$R _1$ : अधिकतम क्षेत्र (largest area) का आयत, जिसकी भुजाएं अक्षों (axes) के समान्तर है, और जो $E _1$ में अंतस्थित (inscribed) है ;
$E _{ n }$ : अध्कितम क्षेत्र वाला दीर्घवृत्त $\frac{ x ^2}{ a _{ n }^2}+\frac{ y ^2}{ b _{ n }^2}=1$ जो $R _{ n -1}, n >1$ में अंतर्स्थित है ;
$R _{ n }$ : अध्कितम क्षेत्र का आयत, जिसकी भुजाएं अक्षों के समान्तर है, और जो $E _{ n }, n >1$ में अंतस्थित है। तब निम्न में से कौनसा (से) विकल्प सही है (हैं) ?
$(1)$ $E _{18}$ और $E _{19}$ की उत्केन्द्रतायें (eccentricities) समान नहीं है
$(2)$ $E _{ o }$ में केन्द्र से एक नाभि (focus) की दूरी $\frac{\sqrt{5}}{32}$ है
$(3)$ $E _9$ के नाभिलम्ब (latus rectum) की लम्बाई $\frac{1}{6}$ है
$(4)$ प्रत्येक पूर्णांक $N$ के लिए $\sum_{ n =1}^{ N }\left( R _{ n }\right.$ का क्षेत्रफल $)<24$ है