दीर्घवृत्त $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ के नाभिलम्बों के सिरों पर खींची गई स्पर्श रेखाओं द्वारा निर्मित चतुर्भुज का क्षेत्रफल (वर्ग इकाइयों में) है

  • [JEE MAIN 2015]
  • A

    $27$

  • B

    $\frac{{27}}{4}$

  • C

    $18$

  • D

    $\frac{{27}}{2}$

Similar Questions

यदि $E$ दीर्घवृत्त $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ है तथा $C$ वृत्त ${x^2} + {y^2} = 9$है। $P$ व $Q$ दो बिन्दु क्रमश: $(1, 2)$ एवं $(2, 1)$ हों तो    

  • [IIT 1994]

दीर्घवृत्त $9{x^2} + 25{y^2} = 225$ की उत्क्रेन्द्रता है

दीर्घवृत्त $25{x^2} + 16{y^2} = 100$ की उत्केन्द्रता है

एक मेहराव अर्ध-दीर्घवृत्ताकार रूप का है। यह $8$ मीटर चौड़ा और केंद्र से $2$ मीटर ऊँचा है। एक सिरे से $1.5$ मीटर दूर बिंदु पर मेहराव की ऊँचाई ज्ञात कीजिए।

माना कि $E_1$ और $E_2$ दो दीर्घवृत हैं जिनके केन्द्र मूलबीन्दु हैं। $E_1$ और $E_2$ की दीर्घ अक्षायें क्रमशः $x$-अक्ष और $y$-अक्ष पर स्थित हैं। माना कि $S: x^2+(y-1)^2=2$ एक वृत्त है। सरल रेखा $x+y=3$, वक्रों $S, E_1$ और $E_2$ को क्रमशः $P, Q$ और $R$ पर स्पर्श करती है। माना कि $P Q=P R=\frac{2 \sqrt{2}}{3}$ है। यदि $e_1$ और $e_2$ क्रमशः $E_1$ और $E_2$ की उत्केन्द्रता (eccentricities) हैं, तब सही कथन है

$(A)$ $e_1^2+e_2^2=\frac{43}{40}$

$(B)$ $e_1 e_2=\frac{\sqrt{7}}{2 \sqrt{10}}$

$(C)$ $\left|e_1^2-e_2^2\right|=\frac{5}{8}$

$(D)$ $e_1 e_2=\frac{\sqrt{3}}{4}$

  • [IIT 2015]