The angle between the pair of tangents drawn from the point $(1, 2)$ to the ellipse $3{x^2} + 2{y^2} = 5$ is
${\tan ^{ - 1}}(12/5)$
${\tan ^{ - 1}}(6/\sqrt 5 )$
${\tan ^{ - 1}}(12/\sqrt 5 )$
${\tan ^{ - 1}}(6/5)$
If $\theta $ and $\phi $ are eccentric angles of the ends of a pair of conjugate diameters of the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, then $\theta - \phi $ is equal to
Which one of the following is the common tangent to the ellipses, $\frac{{{x^2}}}{{{a^2} + {b^2}}} + \frac{{{y^2}}}{{{b^2}}}$ $=1\&$ $ \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{a^2} + {b^2}}}$ $=1$
The minimum area of a triangle formed by any tangent to the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{81}} = 1$ and the coordinate axes is
Find the equation for the ellipse that satisfies the given conditions: Vertices $(0,\,\pm 13),$ foci $(0,\,±5)$.