Which one of the following is the common tangent to the ellipses, $\frac{{{x^2}}}{{{a^2} + {b^2}}} + \frac{{{y^2}}}{{{b^2}}}$ $=1\&$ $ \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{a^2} + {b^2}}}$ $=1$
$ay = bx +\sqrt {{a^4} - {a^2}{b^2} + {b^4}} $
$by = ax -\sqrt {{a^4} + {a^2}{b^2} + {b^4}} $
$ay = bx -\sqrt {{a^4} + {a^2}{b^2} + {b^4}} $
$by = ax +\sqrt {{a^4} - {a^2}{b^2} + {b^4}} $
The number of values of $c$ such that line $y = cx + c$, $c \in R$ touches the curve $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1$ is
Let $S$ and $S\,'$ be the foci of an ellipse and $B$ be any one of the extremities of its minor axis. If $\Delta S\,'BS$ is a right angled triangle with right angle at $B$ and area $(\Delta S\,'BS) = 8\,sq.$ units, then the length of a latus rectum of the ellipse is
Locus of the foot of the perpendicular drawn from the centre upon any tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, is
Tangents are drawn from points onthe circle $x^2 + y^2 = 49$ to the ellipse $\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{24}} = 1$ angle between the tangents is
The area of the rectangle formed by the perpendiculars from the centre of the standard ellipse to the tangent and normal at its point whose eccentric angle is $\pi /4$ is :