Let $O$ be the centre of the circle $x ^2+ y ^2= r ^2$, where $r >\frac{\sqrt{5}}{2}$. Suppose $P Q$ is a chord of this circle and the equation of the line passing through $P$ and $Q$ is $2 x+4 y=5$. If the centre of the circumcircle of the triangle $O P Q$ lies on the line $x+2 y=4$, then the value of $r$ is. . . .
$1$
$2$
$3$
$4$
$y - x + 3 = 0$ is the equation of normal at $\left( {3 + \frac{3}{{\sqrt 2 }},\frac{3}{{\sqrt 2 }}} \right)$ to which of the following circles
If the lines $3x - 4y + 4 = 0$ and $6x - 8y - 7 = 0$ are tangents to a circle, then the radius of the circle is
If variable point $(x, y)$ satisfies the equation $x^2 + y^2 -8x -6y + 9 = 0$ , then range of $\frac{y}{x}$ is
The slope of the tangent at the point $(h,h)$ of the circle ${x^2} + {y^2} = {a^2}$ is
The two tangents to a circle from an external point are always