વિધાન $1$ : જો સમીકરણો $x + ky + 3z = 0, 3x+ ky - 2z = 0, 2x + 3y - 4z = 0$ ને શૂન્યતર ઉકેલ હોય તો $k$ ની કિમંત $\frac{31}{2}$ થાય .

વિધાન $2$ : ત્રણ સજાતીય સમીકરણોના સહગુણકોનો નિશ્રાયકનું મૂલ્ય શૂન્ય હોય તો સમીકરણોનો ઉકેલ શૂન્યતર ઉકેલ મળે.

  • [AIEEE 2012]
  • A

    વિધાન $- 1$ ખોટું છે. વિધાન$- 2$ સાચું છે.

  • B

    વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી છે.

  • C

    વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી નથી.

  • D

    વિધાન $- 1$ સાચું છે. વિધાન $- 2$ ખોટું છે.

Similar Questions

સમીકરણ સંહતી  $-k x+3 y-14 z=25$  ;  $-15 x+4 y-k z=3$ ; $-4 x+y+3 z=4$ એ ગણ ............ માં દરેક $k$ માટે સુસંગત છે.

  • [JEE MAIN 2022]

$\alpha, \beta \in R$ માટે, ધારો કે સુરેખ સમીકરણ સંહતિ  $x-y+z=5$ ; $2 x+2 y+\alpha z=8$ ; $3 x-y+4 z=\beta$ ને અસંખ્ય ઉકેલો છે. તો $\alpha$ અને $\beta$ એ $........$ ના બીજ છે.

  • [JEE MAIN 2023]

$\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&2&3\\1&3&6\end{array}\,} \right| \ne . . . .$

ધારો ક $A.P$. (સમાંતર શ્રેણી) ના ત્રણ ભિત્ર  ક્રમિક પદો $a, b, c$ માટે રેખાઓ$a x+b y+c=0$ બિંદુ $\mathrm{P}$ પર સંગામી થાય છે તથા $\mathrm{Q}(\alpha, \beta)$ એવું બિંદુ છે કે જેથી સમીકરણ સંહતિ  $x+y+z=6 \text {, }$  ,  $2 x+5 y+\alpha z=\beta $ અને  $x+2 y+3 z=4 $ ને અનંત ઉકેલો મળે. તો $(\mathrm{PQ})^2=. . . .  .  $

  • [JEE MAIN 2024]

$\left| {\,\begin{array}{*{20}{c}}1&a&b\\{ - a}&1&c\\{ - b}&{ - c}&1\end{array}\,} \right| = $