$\alpha, \beta \in R$ માટે, ધારો કે સુરેખ સમીકરણ સંહતિ $x-y+z=5$ ; $2 x+2 y+\alpha z=8$ ; $3 x-y+4 z=\beta$ ને અસંખ્ય ઉકેલો છે. તો $\alpha$ અને $\beta$ એ $........$ ના બીજ છે.
$x ^2-10 x +16=0$
$x^2+18 x+56=0$
$x^2-18 x+56=0$
$x^2+14 x+24=0$
જ્યારે તટસ્થ પાસાને ફેક્વામા આવે છે ત્યારે ઉપર આવતી સંખ્યાને ધારોકે $N$ વડે દર્શાવવામાં આવે છે. જો સમીકરણ સંહતિ
$x+y+z=1$ ; $2 x+N y+2 z=2$ ; $3 x+3 y+N z=3$
ને અનન્ય ઉકેલ હોવાની સંભાવના $\frac{k}{6}$ હોય, તો $k$ નું મૂલ્ય તથા $N$ ની શક્ય તમામ કિંમતો નો સરવાળો $...........$ છે.
સમીકરણની સંહતિ $x + y - z = 0, \, 3x - y - z = 0, \,x - 3y + z = 0$ ના ઉકેલની સંખ્યા મેળવો.
ધારો કે સમીકરણ સંહતિ $x+y+k z=2$ ; $2 x+3 y-z=1$ ; $3 x+4 y+2 z=k$ ને અસંખ્ય ઉકેલો છે. $( k +1) x +(2 k -1) y =7$ ; $(2 k +1) x +( k +5) y =10$ ને:
જો રેખીય સમીકરણો $2x + 2y + 3z = a$ ; $3x - y + 5z = b$ ; $x - 3y + 2z = c$ કે જ્યાં $a, b, c$ એ શૂન્યતર વાસ્તવિક સંખ્યા છે તો સમીકરણોને એક કરતાં ઉકેલ માટે . . ..
જો સમીકરણ સંહિત $2 x+3 y-z=5$ ; $x+\alpha y+3 z=-4$ ; $3 x-y+\beta z=7$ ને અસંખ્ય ઉકેલો હોય, તો $13 \alpha \beta$=____________.