State whether the following are true or false. Justify your answer.

$\sin (A+B)=\sin A+\sin B$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\sin (A+B)=\sin A+\sin B$

Let $A=30^{\circ}$ and $B=60^{\circ}$

$\sin (A+B)=\sin \left(30^{\circ}+60^{\circ}\right)$

$=\sin 90^{\circ}$

$=1$

$\sin A+\sin B=\sin 30^{\circ}+\sin 60^{\circ}$

$=\frac{1}{2}+\frac{\sqrt{3}}{2}=\frac{1+\sqrt{3}}{2}$

Clearly, $\sin (A+B) \neq \sin A+\sin B$

Hence, the given statement is false.

Similar Questions

Express the ratios $\cos A ,$ tan $A$ and $\sec A$ in terms of $\sin A .$

Evaluate the following:

$2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$

Given $\sec \theta=\frac{13}{12},$ calculate all other trigonometric ratios.

If $\sec 4 A =\operatorname{cosec}\left( A -20^{\circ}\right),$ where $4 A$ is an acute angle, find the value of $A$. (in $^{\circ}$)

$\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=$