Solution of the equation ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ has the solution
$3$
$2$
$1.5$
$2/3$
${a^{m{{\log }_a}n}} = $
${{\sqrt {(5/2)} + \sqrt {(7 - 3\sqrt 5 )} } \over {\sqrt {(7/2)} + \sqrt {(16 - 5\sqrt 7 )} }}=$
The greatest number among $\root 3 \of 9 ,\root 4 \of {11} ,\root 6 \of {17} $ is
The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has
${{\sqrt 2 } \over {\sqrt {(2 + \sqrt 3 )} - \sqrt {(2 - \sqrt 3 } )}} = $