Solution of the equation  ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ has the solution

  • A

    $3$

  • B

    $2$

  • C

    $1.5$

  • D

    $2/3$

Similar Questions

If ${x^{x\root 3 \of x }} = {(x\,.\,\root 3 \of x )^x},$ then $x =$

Let ${7 \over {{2^{1/2}} + {2^{1/4}} + 1}}$$ = A + B{.2^{1/4}} + C{.2^{1/2}} + D{.2^{3/4}}$, then $A+B+C+D= . . .$

Number of Solution of the equation ${(x)^{x\sqrt x }} = {(x\sqrt x )^x}$ are

If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=

If $x = \sqrt 7 + \sqrt 3 $ and $xy = 4,$then ${x^4} + {y^4}=$