$0.02 \,m$ ની ત્રિજ્યા અને દરેક $5 \mu C$ વીજભાર ધરાવતા યોંસઠ $(64)$ ટીપાં જોડાઈને એક મોટુ ટીપું બનાવે છે. મોટાં ટીપાં અને નાનાં ટીપાંની પૃષ્ઠ ધનતાનો ગુણોત્તર ............... થશે.
$1: 4$
$4: 1$
$1: 8$
$8: 1$
નીચે આપેલા વિધાનો ધ્યાનમાં લો.
વિધાન $I$ : વાહકની સપાટી ઉપર અને અંદરના ભાગમાં વિદ્યુતસ્થિતિમાન અચળ હોય છે.
વિધાન $II :$ વિજભારિત સુવાહકની તરત જ બહારના ભાગ આગળ દરેક બિંદુએ વિદ્યુતક્ષેત્ર સપાટીને લંબરૂપે હોય છે.
ઉપરોક્ત વિધાનોનાં સંદર્ભમાં, નીચે આપેલા વિકલ્પોમાંથી સૌથી સાચો વિકલ્પ પસંદ કરો :
અંદર ત્રિજ્યા $r_{1}$ અને બહારની ત્રિજ્યા $r_{2}$ ધરાવતી એક ગોળાકાર સુવાહક કવચ પરનો વિધુતભાર $Q$ છે.
$(a)$ કવચના કેન્દ્ર પર વિધુતભાર $q$ મૂકવામાં આવે છે. કવચની અંદરની અને બહારની સપાટિઓ પર વિધુતભારની પૃષ્ઠઘનતા કેટલી હશે ?
$(b)$ જો કવચ ગોળાકાર ન હોય પર ગમે તેવો અનિયમિત આકાર ધરાવતી હોય તો પણ બખોલ ( જેમાં કોઈ વિધુતભાર નથી ) ની અંદરનું વિધુતક્ષેત્ર શૂન્ય છે ? સમજાવો.
$1\,cm$ અને $2\, cm$ ત્રિજ્યા ધરાવતા બે ગોળાઓને $1.5 \times 10^{-8}$ અને $0.3 \times 10^{-7}$ કુલબના ધન વિદ્યુતભારથી વિદ્યુતભારીત કરેલા છે. જ્યારે તેઓને તાર વડે જોડવામાં આવે છે તો વિદ્યુતભાર......
એક અવાહક ધન ધાતુના ગોળાને $+Q$ વિદ્યુતભાર વડે વિદ્યુતભારીત કરેલો છે. પૃષ્ઠ પર $+Q$ વિદ્યુતભારનું વિતરણ ....... હશે.
$(a)$ આકૃતિ $(a)$ માં દર્શાવ્યા મુજબ એક બખોલ $( Cavity )$ ધરાવતા સુવાહક $A$ ને $Q$ વિધુતભાર આપેલ છે. દર્શાવો કે સમગ્ર વિધુતભાર સુવાહકની બહારની સપાટી પર જ દૃશયમાન થશે..
$(b)$ $q$ વિધુતભાર ધરાવતો બીજો સુવાહક, કેવીટી ( બખોલ ) ની અંદર $A$ થી અલગ રહે તેમ દાખલ કરેલ છે. દર્શાવો કે $A$ ની બહારની સપાટી પરનો કુલ વિધુતભાર $Q+q$ ( આકૃતિ $(b)$ ) છે.
$(c)$ એક સંવેદી ઉપકરણને તેના પરિસરમાના ( આસપાસના ) પ્રબળ સ્થિરવિધુત ક્ષેત્રોથી બચાવવું ( $Shield$ કરવું ) છે. આ માટે એક શક્ય ઉપાય સૂચવો.