Six charges are placed at the corner of a regular hexagon as shown. If an electron is placed at its centre $O$, force on it will be:
Zero
Along $OF$
Along $OC$
None of these
When ${10^{14}}$ electrons are removed from a neutral metal sphere, the charge on the sphere becomes......$\mu C$
The ratio of electrostatic and gravitational forces acting between electron and proton separated by a distance $5 \times {10^{ - 11}}\,m,$ will be (Charge on electron $=$ $1.6 \times 10^{-19}$ $C$, mass of electron = $ 9.1 \times 10^{-31}$ $kg$, mass of proton = $1.6 \times {10^{ - 27}}\,kg,$ $\,G = 6.7 \times {10^{ - 11}}\,N{m^2}/k{g^2})$
Two identical metallic spheres $A$ and $B$ when placed at certain distance in air repel each other with a force of $F$. Another identical uncharged sphere $C$ is first placed in contact with $A$ and then in contact with $B$ and finally placed at midpoint between spheres $A$ and $B$. The force experienced by sphere $C$ will be.
Two identical charged spheres are suspended by strings of equal lengths. The strings make an angle of $30^o$ with each other. When suspended in a liquid of density $1\, g\, cm^{-3}$, the angle remains the same. If density of the material of the sphere is $4/3\, g\, cm^{-3}$, the dielectric constant of the liquid is
Two charges ${q_1}$ and ${q_2}$ are placed in vacuum at a distance $d$ and the force acting between them is $F$. If a medium of dielectric constant $4$ is introduced around them, the force now will be