Simplify the following:
$\frac{\sqrt{24}}{8}+\frac{\sqrt{54}}{9}$
$\frac{7 \sqrt{3}}{12}$
$\frac{5 \sqrt{6}}{12}$
$\frac{7 \sqrt{6}}{11}$
$\frac{7 \sqrt{6}}{12}$
For each question, select the proper option from four options given, to make the statement true : (Final answer only)
$(\sqrt{5}+3)^{2}$ is a $/$ an $\ldots \ldots \ldots$ number.
Express the following in the form $\frac{p}{q},$ where $p$ and $q$ are integers and $q \neq 0$ :
$0.00323232 \ldots$
Find three different irrational numbers between the irrational numbers $\sqrt{2}$ and $\sqrt{5}$.
Simplify:
${{(625)^{-\frac{1}{2}}}^{-\frac{1}{4}}}^{2}$
The product $\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32}$ equals