For each question, select the proper option from four options given, to make the statement true : (Final answer only)
$(\sqrt{5}+3)^{2}$ is a $/$ an $\ldots \ldots \ldots$ number.
whole
irrational
integer
rational
For each question, select the proper option from four options given, to make the statement true : (Final answer only)
The rationalising factor of $4-\sqrt{5}$ is...........
Find the values of each of the following correct to three places of decimals, rationalising the denominator if needed and taking $\sqrt{2}=1.414$ $\sqrt{3}=1.732$ and $\sqrt{5}=2.236$
$\frac{4}{3 \sqrt{3}-2 \sqrt{2}}+\frac{3}{3 \sqrt{3}+2 \sqrt{2}}$
Fill in the blanks so as to make each of the following statements true (Final answer only)
$(729)^{\frac{1}{3}}=\ldots \ldots$
If $\sqrt{5}=2.236,$ then evaluate $\frac{4-\sqrt{5}}{\sqrt{5}}$ correct to four decimal places.
Add $4 \sqrt{3}+2 \sqrt{5}$ and $6 \sqrt{3}-4 \sqrt{5}$.