For each question, select the proper option from four options given, to make the statement true : (Final answer only)

$(\sqrt{5}+3)^{2}$ is a $/$ an $\ldots \ldots \ldots$ number.

  • A

    whole

  • B

    irrational

  • C

    integer

  • D

    rational

Similar Questions

For each question, select the proper option from four options given, to make the statement true : (Final answer only)

The rationalising factor of $4-\sqrt{5}$ is...........

Find the values of each of the following correct to three places of decimals, rationalising the denominator if needed and taking $\sqrt{2}=1.414$ $\sqrt{3}=1.732$ and $\sqrt{5}=2.236$

$\frac{4}{3 \sqrt{3}-2 \sqrt{2}}+\frac{3}{3 \sqrt{3}+2 \sqrt{2}}$

Fill in the blanks so as to make each of the following statements true (Final answer only)

$(729)^{\frac{1}{3}}=\ldots \ldots$

If $\sqrt{5}=2.236,$ then evaluate $\frac{4-\sqrt{5}}{\sqrt{5}}$ correct to four decimal places.

Add $4 \sqrt{3}+2 \sqrt{5}$ and $6 \sqrt{3}-4 \sqrt{5}$.