Show that the Modulus Function $f : R \rightarrow R$ given by $(x)=|x|$, is neither one - one nor onto, where $|x|$ is $x$, if $x$ is positive or $0$ and $| X |$ is $- x$, if $x$ is negative.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$f:$ $R \rightarrow R$ is given by $f(x) = |x| = \left\{ {\begin{array}{*{20}{l}}
  X&{{\text{ if }}X \geqslant 0} \\ 
  { - X}&{{\text{ if }}X < 0} 
\end{array}} \right.$

It is clear that $f(-1)=|-1|=1$ and $f(1)=|1|=1$

$\therefore f(-1)=f(1),$ but $-1 \neq 1$

$\therefore f$ is not one $-$ one.

Now, consider $-1 \in R$

It is known that $f(x)=|x|$ is always non-negative. Thus, there does not exist any

element $x$ in domain $R$ such that $f(x)=|x|=-1$

$\therefore f$ is not onto.

Hence, the modulus function is neither one-one nor onto.

Similar Questions

The domain of the derivative of the function $f(x) = \left\{ \begin{array}{l}{\tan ^{ - 1}}x\;\;\;\;\;,\;|x|\; \le 1\\\frac{1}{2}(|x|\; - 1)\;,\;|x|\; > 1\end{array} \right.$ is

  • [IIT 2002]

Domain of the definition of function 

$f(x) = \sqrt {\frac{{4 - {x^2}}}{{\left[ x \right] + 2}}} $ is      $($ where $[.] \rightarrow G.I.F.)$

Solve $|x\,-\,2| + |x\,-\,1| = x\,-\,3$

The domain of definition of the function $f (x) = {\log _{\left[ {x + \frac{1}{x}} \right]}}|{x^2} - x - 6|+ ^{16-x}C_{2x-1} + ^{20-3x}P_{2x-5}$  is

Where $[x]$ denotes greatest integer function.

If $f(x)$ satisfies the relation $f\left( {\frac{{5x - 3y}}{2}} \right)\, = \,\frac{{5f(x) - 3f(y)}}{2}\,\forall x,y\in R$ $f(0) = 1, f '(0) = 2$ then period of $sin \ (f(x))$ is