The domain of definition of the function $f (x) = {\log _{\left[ {x + \frac{1}{x}} \right]}}|{x^2} - x - 6|+ ^{16-x}C_{2x-1} + ^{20-3x}P_{2x-5}$ is
Where $[x]$ denotes greatest integer function.
$\{2\}$
$\left[ {\frac{3}{4},\infty } \right] - \{ 2,\,3\} $
$\{2, 3\}$
$\left( { - \frac{1}{4},\,\infty } \right)$
Consider a function $f:\left[0, \frac{\pi}{2}\right]$ $ \rightarrow$ $R$ given by $f(x)=\sin x$ and $g:\left[0, \frac{\pi}{2}\right] $ $\rightarrow$ $R$ given by $g(x)=\cos x .$ Show that $f$ and $g$ are one-one, but $f\,+\,g$ is not one-one.
Minimum integral value of $\alpha$ for which graph of $f(x) = ||x -2| -\alpha|-5$ has exactly four $x-$intercepts-
Which of the following function is surjective but not injective
Period of $f(x) = nx + n - [nx + n]$, $n \in N$
where [ ] denotes the greatest integer function is :
Let $f(x)=a x^{2}+b x+c$ be such that $f(1)=3, f(-2)$ $=\lambda$ and $f (3)=4$. If $f (0)+ f (1)+ f (-2)+ f (3)=14$, then $\lambda$ is equal to$...$