Rationalise the denominator of the following:
$\frac{3 \sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$
$3+2 \sqrt{8}$
$5+3 \sqrt{11}$
$9+2 \sqrt{15}$
$15+2 \sqrt{15}$
Represent $\sqrt{10}$ on the number line.
Find the values of each of the following correct to three places of decimals, rationalising the denominator if needed and taking $\sqrt{2}=1.414$ $\sqrt{3}=1.732$ and $\sqrt{5}=2.236$
$\frac{\sqrt{2}}{2+\sqrt{2}}$
If $\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}=a+b \sqrt{35},$ find the value of $a$ and $b$.
Rationalise the denominator in each of the following and hence evaluate by taking $\sqrt{2}=1.414, \sqrt{3}=1.732$ and $\sqrt{5}=2.236,$ upto three places of decimal.
$\frac{\sqrt{10}-\sqrt{5}}{2}$
The product of any two irrational numbers is