If $\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}=a+b \sqrt{35},$ find the value of $a$ and $b$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$a=6, \quad b=1$

Similar Questions

Represent $\sqrt{10}$ on the number line.

Let $x$ and $y$ be rational and irrational numbers, respectively. Is $x+y$ necessarily an irrational number? Give an example in support of your answer.

The decimal expansion of the number $\sqrt{2}$ is

Prove that

$\left(\frac{x^{a}}{x^{b}}\right)^{a+b} \times\left(\frac{x^{b}}{x^{c}}\right)^{b+c} \times\left(\frac{x^{c}}{x^{a}}\right)^{c+a}=1$

Rationalise the denominator in each of the following

$\frac{18}{3 \sqrt{2}-2 \sqrt{3}}$