Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$

$L.H.S.\,=\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}$

$=\frac{\cos ^{2} A+(1+\sin A)^{2}}{(1+\sin A)(\cos A)}$

$=\frac{\cos ^{2} A+1+\sin ^{2} A+2 \sin A}{(1+\sin A)(\cos A)}$

$=\frac{\sin ^{2} A+\cos ^{2} A+1+2 \sin A}{(1+\sin A)(\cos A)}$

$=\frac{1+1+2 \sin A}{(1+\sin A)(\cos A)}=\frac{2+2 \sin A}{(1+\sin A)(\cos A)}$

$=\frac{2(1+\sin A)}{(1+\sin A)(\cos A)}=\frac{2}{\cos A}=2 \sec A$

$=R . H . S .$

Similar Questions

State whether the following are true or false. Justify your answer.

The value of $\sin \theta$ increases as $\theta$ increases.

$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$

Express $\sin 67^{\circ}+\cos 75^{\circ}$ in terms of trigonometric ratios of angles between $0^{\circ}$ and $45^{\circ}$

Express the trigonometric ratios $\sin A , \sec A$ and $\tan A$ in terms of $\cot A$.

In $\triangle PQR ,$ right $-$ angled at $Q , PR + QR =25\, cm$ and $PQ =5\, cm .$ Determine the values of $\sin P, \cos P$ and $\tan P$.